May 17, 2020

Johns Hopkins Sued for Allegedly Infecting People with STDs in the Name of Research

Johns Hopkins
Admin
3 min
The Johns Hopkins Hospital is headquartered in Baltimore, Maryland.
A $1 billion lawsuit has been filed against the Johns Hopkins Hospital System Corp. by more than 750 plaintiffs who were allegedly infected with venerea...

A $1 billion lawsuit has been filed against the Johns Hopkins Hospital System Corp. by more than 750 plaintiffs who were allegedly infected with venereal diseases without their consent during government experiments in Guatemala in the 1940s and 50s.

The lawsuit filed in Baltimore City Circuit Court alleges that Hopkins, as a leading authority on venereal disease at the time, played a key role in a government study of syphilis and other sexually transmitted diseases in Guatemala.

[READ MORE] The World May No Longer Know These 4 Deadly Diseases By 2030

The suit claims officials at Johns Hopkins had "substantial influence" over the studies by controlling some panels that advised the federal government on how to spend research dollars. The suit also alleges that Hopkins and the Rockefeller Foundation, which is also named as a defendant, "did not limit their involvement to design, planning, funding and authorization of the Experiments; instead, they exercised control over, supervised, supported, encouraged, participated in and directed the course of the Experiments."

The suit says the experiments were conducted abroad in order to give "researchers the opportunity to test additional methods of infecting humans with venereal disease easily hidden from public scrutiny."

Hopkins officials reject the suit’s claims and say the institution did not conduct or pay for the government study. Hopkins doctors served on a government committee that oversaw funding for the study, officials said. 

According to HHS, researchers initially infected Guatemalan sex workers with gonorrhea or syphilis, then allowed them to have sex with soldiers and prison inmates with the aim of spreading the disease. The suit says that orphans, children and mental patients were also deliberately infected without their consent, and that treatment was withheld from some subjects.

The experiment came to light in 2012, prompting President Obama to apologize for the research, as did then-Secretary of State Hillary Rodham Clinton and then-Secretary of Health and Human Services Kathleen Sebelius. 

Robert Mathias, a lawyer with DLA Piper and Hopkins’ lead counsel, described the suit as baseless and said he will likely move to dismiss the case on statute of limitations.

[READ MORE] Doctors Want More Ebola Cases, Here's Why

“The study they’re complaining about took place almost 70 years ago,” Mathias told the Baltimore Business Journal. “The doctors they name are all deceased.”

Paul Bekman, one of the attorneys representing the victims and their families in Guatemala, believes otherwise.

“We can back up every single thing we have said in the complaint with facts and documents,” Bekman said. “Hopkins and Rockefeller were involved in this up to their eyebrows.”

A federal judge in 2012 dismissed a lawsuit against the U.S. government involving the same study after determining that the U.S. government can't be held liable for actions outside the United States.

Follow us on Twitter (@HealthcareGlbl) and like us on Facebook!

Share article

Jun 19, 2021

Driving sustainability in medical device production

medicaldevices
Sustainability
recycling
biotechnology
George I’ons
5 min
George I’ons, Head of Product Strategy and Insights at Owen Mumford Pharmaceutical Services on how technology is driving sustainability 

Environmental protection and stewardship are rapidly rising to the top of the corporate agenda and medical device businesses are no exception. The healthcare sectors of the United States, Australia, Canada, and England combined emit an estimated 748 million metric tons of greenhouse gases each year, an output greater than the carbon emissions of all but six nations worldwide. In order to curb this situation various European standards have been introduced. 

The Waste Electrical and Electronic Equipment (WEEE); Restriction on Hazardous Substances (RoHS); Registration, Evaluation, and Authorisation of Chemicals (REACH) and the Energy Using Products (EuP) regulations have all significantly altered manufacturing processes, specific labelling, compliance with disposal restrictions, and creation of instructions for end-of-life management and recycling.

At the moment many medical devices are currently exempt from these regulations but several directives, including RoHS and WEEE, are in the process of being reviewed and could be applicable in future. This is especially relevant for devices that are ‘connected’ and have a digital monitoring component which then brings them under the regulatory purview of authorities that govern devices with electronic components.

Safety, Usability and Sustainability

While medical device manufacturers have been working to respond to increasing demand for environmental sustainability from the market, they also have to contend with a key element of their mission: to ensure safety and usability to healthcare workers and patients. Parenteral and other invasive devices are strictly regulated to help reduce the risk of Healthcare Acquired Infection which typically runs as high as 5% and 8% in most developed countries, according to the European Centre for Disease Prevention and Control. As a result, they typically contain disposable single-use plastic elements.

At the same time, many hospitals and purchasing organisations have started to recognise that sustainable purchasing practices play a pivotal role in reducing costs over time. Many GPOs have appointed and empowered Senior Directors of Environmentally Preferred Sourcing who are successfully implementing the sustainable purchasing business case. In addition global pharmaceutical companies are increasingly creating senior positions with sustainability objectives as key to the role.

Medical device disposal is a particularly burning issue; generally carried out through incineration in the EU, it typically releases nitrous oxide, as well as known carcinogens including polychlorinated biphenyls, furans and dioxins. Some of the strategies trialled by manufacturers to reduce waste matter destined to incineration include sterilisation and reprocessing.

Sterilisation, however, falls short on the environmental front, and may consume more energy and produce more emissions than incineration itself. In the United States for example, 50% of all sterile medical devices are sterilised with ethylene oxide but since this method releases harmful emissions, the US Food and Drug Administration is now encouraging the development of new methods or technologies. Many other established sterilisation methods use glutaraldehyde that is not only harmful to the environment but also tends to be regulated by strict usage and disposal rules such as COSSH guidelines.

Focus on Recycling

The outlook on recycling is changing significantly thanks to new research and technologies enabling, for example, monomer extraction. Recycled polymers can be broken down to their constituent monomers promoting an almost limitless recyclability of some polymers. In addition to this, Polyvinyl chloride (PVC), renewable polyethylene and polyethylene terephthalate (PET) can be recycled several times without losing critical properties.

Reducing the impact of packaging can also significantly reduce the materials that need to be dealt with through either waste or recycling. Packaging manufacturers are decreasing packaging volume by favouring sealed trays instead of pouches, laser-etching instructions directly on to the tray where regulation permits it, or reducing the number of components required overall. In addition to this, for recycling plans to be successful it important to have a full understanding of the practices surrounding device use and to establish, where possible,  closed loop recycling systems that recover the waste materials from hospitals or patients and bring them back into the recycling process.

Sustainable Manufacturing: Technology and Research

Greater employment of fast degrading plastics or material from other sources is a key strategy to reduce harmful pollutants both at production and disposal stage. Bio-based materials can in fact offset the carbon emitted during processing as the monomer source grows, and a growing range of sources for bio based monomers -such as wood pulp or sugar cane- is available. However, when assessing the most suitable material for a part, the entire lifecycle of the product needs to be considered. For example: bio-degradable polymers can contaminate a recycling stream and emit methane when incinerated.

The use of environmentally friendly materials should also be supported by an increase in clean renewable energy sources. Lower energy consumption means fewer carbon emissions but also financial savings, making this an appealing measure for manufacturers. New technologies are proving a major gamechanger on this front, helping manufacturers marry their environmental stewardship with cost savings and efficiency.  3D printing, for example, can help develop optimum product moulds more quickly, refining production parameters to minimise raw materials volumes and maximising output productivity.

Similarly, ‘digital twin’ production software uses inline sensors to create a virtual, real-time mirror of the production environment to enable inline refinements. The objective is to achieve “zero defect”, waste-free manufacturing. In addition to this, LEAN manufacturing methodologies are already helping to optimise inventory management and reduce overproduction. 

Sustainability by Design

It is increasingly clear that effective environmental sustainability in the medical device sector cannot exist without a full view of the product life cycle from concept development, material selection, design and engineering to manufacturing, packaging, transportation, sales, use, and end-of-life disposal. These evaluations are typically made for factors such as manufacturing efficiency, time to market, or safety and regulatory compliance, packaging and transportation costs, but should be extended to energy efficiency and environmental impact by means such as life cycle analysis.  

In addition to this, with devices rapidly becoming more digitally connected, developers need to be aware that the costs of disposable electronics would simply not be viable, or indeed acceptable in the light of electronics disposal regulations. Design therefore should focus on creating a simple, repeatable interface between the two component sections so as not to impair the functionality or efficacy. As reducing waste and harmful emissions continues to exert businesses and governments globally, the medical devices industry cannot stand by. The environmental but also commercial implications of inaction are too serious and the array of solutions now available is exciting and diverse.

Share article