May 17, 2020

Effectiveness of cancer treatments boosted by fasting

Cancer
fasting
chemotherapy
treatments
Admin
2 min
Fasting could assist chemotherapy cancer treatments
Short-term fasting is being touted as a potential method of beating cancer after a study found it helped to boost the effectiveness of chemotherapy tre...

Short-term fasting is being touted as a potential method of beating cancer after a study found it helped to boost the effectiveness of chemotherapy treatments.

Initial research, which was carried out at the University of Southern California, has found that fasting can help to slow the growth rates of cancerous tumours.

When abstaining from food for a short period of time was combined with bouts of chemotherapy, some cancers – including breast cancer, melanoma and giloma cells – were cured.

Although the results of the study (which was carried out on mice) are promising, the researchers are warning much more detailed research, possible lasting years, needs to be carried out in humans to see if the effects of fasting are mirrored.

To read the latest edition of Healthcare Global, click here

It was discovered that the cancer cells were severely affected by fasting and instead of going into hibernation like regular cells they continued to divide and eventually killed themselves.

“A way to beat cancer cells may not be to try to find drugs that kill them specifically but to confuse them by generating extreme environments, such as fasting that only normal cells can quickly respond to,” commented Professor Valter Longo, the study’s lead researcher.

He added: “The cell is, in fact, committing cellular suicide.

“What we're seeing is that the cancer cell tries to compensate for the lack of all these things missing in the blood after fasting.”

Longo continued: “It may be trying to replace them, but it can't.”

However, the scientists are warning that cancer patients should not read this information and start fasting, at least not until further studies have confirmed if fasting does in fact emulate these results in human beings.  

They have also admitted the notion of a cancer patient fasting does come with associated dangers, especially if the patient has already lost a lot of weight through treatment.  

The team has also warned it again might not be a suitable solution for patients with other lifestyle factors that could be aggravated by such dieting; for example, diabetes.

As part of the study fasting was tested against eight different types of cancer, including breast cancer, skin cancer and cancer of the brain.

All eight strains of the disease were treatable by combining fasting with chemotherapy treatments.

The results of the study have now been published in the Science Translational Medicine journal.

The Healthcare Global magazine is now available on the iPad. Click here to download it.

Share article

Apr 30, 2021

The challenges to vaccine distribution affecting everyone

covid-19vaccine
vaccinesupply
Supplychain
Blockchain
Jonathan Colehower
5 min
The challenges to vaccine distribution affecting everyone
Jonathan Colehower, CEO at CargoChain, describes the COVID-19 vaccine distribution challenges impacting every country, organisation and individual...

While it is comforting to know that vaccines against COVID-19 are showing remarkable efficacy, the world still faces intractable challenges with vaccine distribution. Specifically, the sheer number of vaccines required and the complexity of global supply chains are sure to present problems we have neither experienced nor even imagined. 

Current projections estimate that we could need 12-15 billion doses of vaccine, but the largest vaccine manufacturers produce less than half this volume in a year. To understand the scale of the problem, imagine stacking one billion pennies – you would have a stack that is 950 miles high. Now, think of that times ten. This is a massive problem that one nation can’t solve alone.  

Production capacity 

Even if we have a vaccine – can we make enough? Based on current projections, Pfizer expects to produce up to 1.3 billion doses this year. Moderna is working to expand its capacity to one billion units this year. Serum Institute of India, the world’s largest vaccine producer, is likely to produce 60% of the 3 billion doses committed by AstraZeneca, Johnson & Johnson and Sanofi. This leaves us about 7 billion doses short. 

Expanding vaccine production for most regions in the world is complicated and time-consuming. Unlike many traditional manufacturing operations that can expand relatively quickly and with limited regulation, pharmaceutical production must meet current good manufacturing practice (CGMP) guidelines. So, not only does it take time to transition from R&D to commercial manufacturing, but it could also take an additional six months to achieve CGMP certification. 

The problem becomes even more complex when considering the co-products required. Glass vials and syringes are just two of the most essential co-products needed to produce a vaccine. Last year, before COVID-19, global demand for glass vials was 12 billion. Even if it is safe to dispense ten doses per vial, there is certain to be significant pressure on world supply of the materials needed to package and distribute a vaccine.

It is imperative drug manufacturers and their raw material suppliers have clear visibility of production plans and raw material availability if there is any hope of optimizing scarce resources and maximising production yield.

Distribution requirements

It is widely known by now that temperature is a critical factor for the COVID-19 vaccine. Even the regions with the most developed logistics infrastructures and resources needed to support a cold-chain network are sure to struggle with distribution.

For the United States alone, State and local health agencies have determined distribution costs will exceed $8.4 billion, including $3 billion for workforce recruitment and training; $1.2 billion for cold-chain, $1 billion vaccination sites and $0.5 billion IT upgrades.  

The complexity of the problem increases further when considering countries such as India that do not have cold-chain logistics networks that meet vaccine requirements. Despite India’s network of 28,000 cold-chain units, none are capable of transporting vaccines below -25°Celsius. While India’s Serum Institute has licensed to manufacture AstraZeneca’s vaccine, which can reportedly be stored in standard refrigerated environments, even a regular vaccine cold chain poses major challenges.

Furthermore, security will undoubtedly become a significant concern that global authorities must address with a coordinated solution. According to the Pharmaceutical Security Institute, theft and counterfeiting of pharmaceutical products rose nearly 70% over the past five years. As with any valuable and scarce product, counterfeits will emerge. Suppliers and producers are actively working on innovative approaches to limit black-market interference. Corning, for example, is equipping vials with black-light verification to curb counterfeiting.

Clearly, this is a global problem that will require an unprecedented level of collaboration and coordination.

Disconnected information systems 

While it is unreasonable to expect every country around the world will suddenly adopt a standard technology that would provide immediate, accurate and available information for everyone, it is not unreasonable to think that we can align on a standard taxonomy that can serve as a Rosetta Stone for collaboration. 

A shared view of the situation (inventory, raw materials, delivery, defects) will provide every nation with the necessary information to make life-saving decisions, such as resource pooling, stock allocations and population coverage.

By allowing one central authority, such as the World Health Organization, to organize and align global leaders to a single collaboration standard, such as GS1, and a standard sharing protocol, such as DSCSA, then every supply chain participant will have the ability to predict, plan and execute in a way that maximises global health.

Political influence and social equality 

As if we don’t have enough stress and churn in today’s geopolitical environment, we must now include the challenge of “vaccine nationalism.” While this might not appear to be a supply chain problem, per se, it is a critical challenge that will hinge on supply chain capabilities.

In response to the critical supply issues the world experienced with SARS-CoV-2, the World Health Organization, Gavi, the Vaccine Alliance and the Coalition for Epidemic Preparedness Innovations (CEPI) formed Covax: a coalition dedicated to equitable distribution of 2 billion doses of approved vaccines to its 172 member countries. Covax is currently facilitating a purchasing pool and has made commitments to buy massive quantities of approved vaccines when they become available.  

However, several political powerhouse countries, such as the United States and Russia, are not participating. Instead, they are striking bilateral deals with drug manufacturers – essentially, competing with the rest of the world to secure a national supply. Allocating scarce resources is never easy, but when availability could mean the difference between life and death, it becomes almost impossible.

Global production, distribution and social equality present dependent yet conflicting realities that will demand global supply chains provide complete transparency and an immutable chain of custody imperative to vaccine distribution. 

The technology is available today – we just need to use it. We have the ability to track every batch, pallet, box, vile and dose along the supply chain. We have the ability to know with absolute certainty that the vaccine is approved, where and when it was manufactured, how it was handled and whether it was compromised at any point in the supply chain. Modern blockchain technologies should be applied so that every nation, institution, regulator, doctor and patient can have confidence in knowing that they are making an impact in eradicating COVID-19.

Share article